全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
582 0
2018-02-04
摘要:本文针对BP神经网络训练学习过程中,连接权在调整时容易陷入局部极小使得进一步调整失去作用的问题,提出了一种有助于提高BP神经网络逼近精度的方法--基于Metropolis准则的神经网络学习算法.该算法整体采用传统的BP算法,但在一定条件下依据概率进行连接权的调整,使权值以一定的概率跳跃,跳出局部极小区,最终达到全局极小.仿真结果表明了这一算法的有效性.http://www.cqvip.com//QK/95830A/200305/8274468.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群