摘要:探索与扩张是Q-学习算法中动作选取的索可以跳出局部最优并加速学习,而过多的探索将影响算法的性能.通过把Q-学习中寻求最优策略表示为组合优化问题中最优解的搜索,将模拟退火算法的Metropolis准则用于Q-学习中探索和扩张之间的折衷处理,提出基于Metropolis准则的Q-学习算法SA-Q-learning.通过实验比较,它具有更快的收敛速度,而且避免了过多探索引起的算法性能下降.
原文链接:http://www.cqvip.com//QK/94913X/200206/6335801.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)