摘要:在铁路货运量预测中,为改善传统预测方法数据拟合度不高、外推性不强等问题,提出基于BP神经网络技术的货运量预测模型,该模型采用贝叶斯正则化方法以提高
神经网络推广能力.实验比较发现,该模型具有较强的自适应性,其拟合、预测结果优于灰色预测模型GM(1,1)和修正指数回归模型,证实了该方法的可行性和可靠性.http://www.cqvip.com//QK/90805X/200509/20150947.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)