摘要:运用遗传算法(GA)来优化设计径向基概率
神经网络(RBPNN)结构,优选了隐中心矢量和优化求取对应的核函数控制参数.提出的染色体编码方式,充分体现了所选隐中心矢量在模式样本空间中的数量及位置分布,同时还包含了相适应的核函数控制参数信息.新构造的适应度函数不仅有效地控制了网络输出的误差精度,而且还能够使得RBPNN结构优化趋于最简.将IRIS分类问题用于检验该算法的有效性并与ROLSA和MKM进行了比较研究,结果表明,GA的优化效率最高,而且GA优化后的RBPNN在推广能力方面也没有明显下降.http://www.cqvip.com//QK/94257X/200306/8867131.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)