摘要:提出了特征选择和支持向量机(SVM)训练模型的联合优化方法,利用特征选择和训练模型的互相依赖关系来提高SVM性能。该方法包括3个关键技术:优化目标是提高SVM性能,它是由ξα—estimate方法计算出来的;用一个二进制向量表示特征选择,用混合核函数和折中控制参数来表示训练模型;用演化算法来求解联合优化问题。通过使用入侵检测标准数据,比较了联合优化、单独优化和分开优化方法以及遗传算法(GA)和粒子群优化算法(PSO)的使用效果。结果表明:联合优化方法能更好地提高SVM性能,并且收敛速度更快;GA的效果比PSO要好。http://www.cqvip.com//QK/93884X/200401/9111008.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)