摘要:支持向量机已经成为处理大规模高维数据的一种有效方法。然而处理大规模数据需要的时间和空间代价很高,增量学习可以解决这个问题。该文分析了支持向量的性质和增量学习的过程,提出了一种新的增量学习算法,舍弃了对最终分类无用的样本,在保证测试精度的同时减少了训练时间。最后的数值实验和应用实例说明:算法是可行的、有效的。http://www.cqvip.com//QK/91690X/200436/11632531.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)