全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
403 0
2018-02-09
摘要:共指消解是信息抽取中一个重要子任务。近年来,许多学者尝试利用统计机器学习的方法来进行共指消解并取得了一定的进展。背景知识作为新的研究热点已经被越来越多地利用在自然语言处理的各个领域。该文集成多种背景语义知识作为基于二元分类的共指消解框架的特征,分别在WordNet、维基百科上提取背景知识,同时利用句子中的浅层语义关系、常见文本模式以及待消解词上下文文本特征。并利用特征选择算法自动选择最优的特征组合,同时对比同样的特征下最大熵模型与支持向量机模型的表现。在ACE数据集上实验结果表明,通过集成各种经过特征选择后的背景语义知识,共指消解的结果有进一步提高。http://www.cqvip.com//QK/96983X/200903/30375746.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群