全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
677 0
2018-02-09
摘要:传统的机器学习方法基于一个基本的假设:训练数据和测试数据遵循相同的分布。然而,在许多现实的应用中,这种假设并不能够被保证。在这种情况下,传统的机器学习方法因没有意识到分布的改变而可能失败。近年来,迁移学习技术被专门用来解决这一缺陷。文章提出了一种叫做TTLR的方法,将原始领域中的训练数据有效地迁移到目标领域中,该方法首先对Logistic回归分析模型进行扩展,然后利用不同领域概率分布之间的差异性,调节训练数据中每个实例的权重,从而使得训练得到的分类器更加适应于目标领域;在所选取的数据集上得到的实验结果表明,与传统的监督式学习方法相比,所提出的方法有很大的优势。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群