摘要:文中提出了一种具有抗噪音能力的增量式混合学习算法IHMCAP,该算法将基于概率论的符号学习与神经网络学习相结合,通过引入FTART神经网络,不仅实现了两种不同思维层次的靠近,还成功地解决了符号学习与
神经网络学习精度之间的均衡性问题。其独特的增理学习机制不仅使得它只需进行一遍增量学习即可完成对新增示例的学习,还使该算法具有较好的抗噪音能力,从而可以应用于实时在线学习任务。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)