摘要:对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉斯特征根映射等流形学习方法处理基因表达谱数据,得到非线性降维后的数据。在此基础上应用K均值聚类、模糊聚类、自组织映射
神经网络等聚类方法,根据给定的阈值,从酵母基因表达数据的382个聚类结果中得到了117个共表达基因对,而从人类血清组织细胞的基因表达数据的132个聚类结果中得到了89个共表达基因对。使用的判别准则表明,基于流形学习的聚类方法与以往的方法相当,且能够被用以发现高维基因芯片表达数据中的低维的流形结构。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)