全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
755 0
2018-02-10
摘要:为了减小室内环境因素对室内WiFi定位的影响,降低定位成本,提高定位精度以及扩大定位区域,通过对室内定位系统和机器学习算法的讨论,提出了一种基于K-means和Random Forest融合的WiFi室内定位算法。针对室内wiFi信号强度分布的特点,该算法通过K-means聚类改进算法对数据进行初始分类,然后使用Random Forest对初始分类结果进行二次分类。实验结果表明,该定位算法的定位精度在2米以内的概率为89.1%,达到预期的定位效果,同时对缺失值数据具有较好的适应能力。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群