摘要:实体识别在许多自然语言处理应用系统中发挥着极其重要的作用。目前大部分研究集中在命名实体识别,且不考虑实体之间的嵌套,本文在自动内容抽取评测(Automatic Content Extraction,ACE)背景下,对汉语文本中各种实体提及(命名性,名词性,代词性)的多层嵌套识别进行了研究。我们将嵌套实体识别分成两个子任务:嵌套实体边界检测和实体多层信息标注。首先,本文提出了一种层次结构信息编码方法,将多层嵌套边界检测问题转化为传统的序列标注问题,利用条件随机场模型融合多种特征进行统计决策。其次,将多层信息标注问题看作分类问题,从实现的角度设计了含有两个分类引擎的并行SVM分类器,避免了对每层信息标注都设计一个分类器,比采用单一分类器在性能上有明显提高。在标准ACE语料上的实验表明,基于条件随机场的多层实体边界检测模型正确率达到71%,融合特征选择策略的两个并行分类引擎的正确率也分别达到了89.05%和82.17%。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)