全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
430 0
2018-02-13
摘要:相关向赶机(RVM)是一种基于稀疏Bayesian学习理论的新型机器学习方法,具有概率式输出、稀疏性强、参数设置简单、核函数选择灵活等优点,克服了人工神经网络(ANN)和支持向量机(SVM)等典型机器学习方法的诸多固有缺陷。文章从模型选择与优化、模型计算效率和模型鲁棒性改进3个方面综述了RVM的理论研究进展;总结了RVM在故障诊断与预测巾的应用研究现状;分析指出了当前研究中存在的问题,并讨论了基于RVM的故障诊断与预测技术的研究方向。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群