摘要:基于复杂非线性系统相空间重构理论,提出了混沌背景中微弱信号检测的神经网络方法,利用
神经网络强大的学习和非线性处理能力,建立了混沌背景噪声的一步预测模型,从预测误差中检测淹没在混沌背景噪声中的微弱目标信号(包括周期信号和瞬态信号),研究了混沌背景中存在白噪声时该方法的检测能力,指出了目标信号为瞬态信号和周期信号时检测原理的异同点,最后以Lorenz系统作为混沌背景噪声进行了仿真实验,实验表明该方法能有效地将混沌背景中极其微弱的信号检测出来.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)