摘要:金融市场中的数据由于其内在联系,通常表现为相互关联的时间序列.本文主要讨论如何将金融市场中时间序列模型简化为相应的线性模型,继而用传统的线性模型方法去检验异常值的存在,并且判断该异常值是加性异常值还是创新异常值.创新异常值的挖掘对于金融风险的研究不仅具有理论上的意义,而且具有很强的现实意义.最后进行了算法的实证分析,结果表明本文的两种方法在金融市场的研究中是可行的并且行之有效.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)