摘要:中长期电力系统负荷预测受大量不确定因素的影响,研究表明聚类方法能够将各种影响因素综合引入预测模型。所提出的改进聚类算法结合了层次方法中的变色龙(Chameleon)法与基于密度算法的优点,实现了最优聚类,同时还弥补了单纯层次法无法对复杂形状数据聚类和算法不可逆的缺点。算法在进行聚类前以不完备
数据分析补全法算法(ROUSTIDA)为数据处理前导.确保了聚类所需历史数据的准确性和完备性。实践证明该算法具有计算速度快、预测精度高、预测误差变化小等优点。尤其在影响因素繁多、历史数据不完整或不准确时,改进算法更能体现出优越性。
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)