摘要:研究了基于覆盖的构造型神经网络(cover based constructive neural networks,简称CBCNN)中的双交叉覆盖增量学习算法(BiCovering algorithm,简称BiCA).根据CBCNN的基本思想,该算法进一步通过构造多个正反覆盖簇,使得网络在首次构造完成后还可以不断地修改与优化神经网络的参数与结构,增加或删除网络中的节点,进行增量学习.通过分析认为,BiCA学习算法不但保留了CBCNN网络的优点与特点,而且实现了增量学习并提高了CBCNN网络的泛化能力.仿真实验结果显示,该增量学习算法在
神经网络初始分类能力较差的情况下具有快速学习能力,并且对样本的学习顺序不敏感.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)