全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
838 0
2018-02-21
摘要:利用500hPa月平均高度距平场派生出涡度变化、经向风切变、纬向风切变等变量场。从1958-2001年6月500hPa月平均高度距平场及其派生变量场中选取预报因子,并将各个场中的因子分别作EOF分解,得到浓缩了初选因子变量大部分信息的综合预报因子,用以建立同月的广西月降水量的BP神经网络预报模型。进而利用2002—2005年月动力延伸集合预报产品及其派生变量,对广西6月降水量作BP神经网络降尺度释用预报。作为对比试验,以相同的预报量,从1957—2000年5—12月及1958—2001年1-4月500hPa月平均高度距平场中选取预报因子,并作相同处理,建立前期综合因子的广西6月降水量BP神经网络预报模型。独立样本试验结果表明,利用同期综合因子建立的BP神经网络降尺度预报模型的拟合精度优于利用前期综合因子建立的预报模型,但预报效果依赖于月动力延伸集合预报产品。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群