括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。
在第三阶段,如果 ,则乙会选择不打官司。这时逆推回第二阶段,甲会选择不分,因为分的得益2小于不分的得益4。再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。
在第三阶段,如果 ,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。逆推回第二阶段,如果 ,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。在这种情况下再逆推回第一阶段,那么当 时乙会选择不借,双方得益(1,0),当 时乙肯定会选择借,最后双方得益为(a,b)。在第二阶段如果 ,则甲会选择分,此时双方得益为(2,2)。再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益(1,0),不管这时候b的值是多少;
(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);
(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);
(4) ,此时乙在第一阶段会选择借,甲在第二阶段会选择分,双方得益(2,2)。
要本博弈的“威胁”,即“打”是可信的,条件是 。要本博弈的“承诺”,即“分”是可信的,条件是 且 。
注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。不过最终的结果并不会超出上面给出的范围。
[此贴子已经被作者于2007-11-16 0:00:24编辑过]