全部版块 我的主页
论坛 经济学论坛 三区 微观经济学
1283 1
2018-07-27
AnIntroduction To Statistical Leaarning with Application in R
无标题.png

Preface vii
1 Introduction 1
2 Statistical Learning 15

3 Linear Regression 59

4 Classification 127
4.1 An Overview of Classification . . . . . . . . . . . . . . . . . 128
4.2 Why Not Linear Regression? . . . . . . . . . . . . . . . . . 129
4.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.1 The Logistic Model . . . . . . . . . . . . . . . . . . . 131
4.3.2 Estimating the Regression Coefficients . . . . . . . . 133
4.3.3 Making Predictions . . . . . . . . . . . . . . . . . . . 134
4.3.4 Multiple Logistic Regression . . . . . . . . . . . . . . 135
4.3.5 Logistic Regression for >2 Response Classes . . . . . 137
4.4 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . 138
4.4.1 Using Bayes’ Theorem for Classification . . . . . . . 138
4.4.2 Linear Discriminant Analysis for p = 1 . . . . . . . . 139
4.4.3 Linear Discriminant Analysis for p >1 . . . . . . . . 142
4.4.4 Quadratic Discriminant Analysis . . . . . . . . . . . 149
4.5 A Comparison of Classification Methods . . . . . . . . . . . 151
4.6 Lab: Logistic Regression, LDA, QDA, and KNN . . . . . . 154
4.6.1 The Stock Market Data . . . . . . . . . . . . . . . . 154
4.6.2 Logistic Regression . . . . . . . . . . . . . . . . . . . 156
4.6.3 Linear Discriminant Analysis . . . . . . . . . . . . . 161
4.6.4 Quadratic Discriminant Analysis . . . . . . . . . . . 163
4.6.5 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . 163
4.6.6 An Application to Caravan Insurance Data . . . . . 165
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5 Resampling Methods 175
5.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 176
5.1.1 The Validation Set Approach . . . . . . . . . . . . . 176
5.1.2 Leave-One-Out Cross-Validation . . . . . . . . . . . 178
5.1.3 k-Fold Cross-Validation . . . . . . . . . . . . . . . . 181
5.1.4 Bias-Variance Trade-Off for k-Fold
Cross-Validation . . . . . . . . . . . . . . . . . . . . 183
5.1.5 Cross-Validation on Classification Problems . . . . . 184
5.2 The Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3 Lab: Cross-Validation and the Bootstrap . . . . . . . . . . . 190
5.3.1 The Validation Set Approach . . . . . . . . . . . . . 191
5.3.2 Leave-One-Out Cross-Validation . . . . . . . . . . . 192
5.3.3 k-Fold Cross-Validation . . . . . . . . . . . . . . . . 193
5.3.4 The Bootstrap . . . . . . . . . . . . . . . . . . . . . 194
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6 Linear Model Selection and Regularization 203
6.1 Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1.1 Best Subset Selection . . . . . . . . . . . . . . . . . 205
6.1.2 Stepwise Selection . . . . . . . . . . . . . . . . . . . 207
6.1.3 Choosing the Optimal Model . . . . . . . . . . . . . 210
6.2 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . . 214
6.2.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . 215
6.2.2 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . 219
6.2.3 Selecting the Tuning Parameter . . . . . . . . . . . . 227
6.3 Dimension Reduction Methods . . . . . . . . . . . . . . . . 228
6.3.1 Principal Components Regression . . . . . . . . . . . 230
6.3.2 Partial Least Squares . . . . . . . . . . . . . . . . . 237
6.4 Considerations in High Dimensions . . . . . . . . . . . . . . 238
6.4.1 High-Dimensional Data . . . . . . . . . . . . . . . . 238
6.4.2 What Goes Wrong in High Dimensions? . . . . . . . 239
6.4.3 Regression in High Dimensions . . . . . . . . . . . . 241
6.4.4 Interpreting Results in High Dimensions . . . . . . . 243
6.5 Lab 1: Subset Selection Methods . . . . . . . . . . . . . . . 244
6.5.1 Best Subset Selection . . . . . . . . . . . . . . . . . 244
6.5.2 Forward and Backward Stepwise Selection . . . . . . 247
6.5.3 Choosing Among Models Using the Validation
Set Approach and Cross-Validation . . . . . . . . . . 248
6.6 Lab 2: Ridge Regression and the Lasso . . . . . . . . . . . . 251
6.6.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . 251
6.6.2 The Lasso . . . . . . . . . . . . . . . . . . . . . . . . 255
6.7 Lab 3: PCR and PLS Regression . . . . . . . . . . . . . . . 256
6.7.1 Principal Components Regression . . . . . . . . . . . 256
6.7.2 Partial Least Squares . . . . . . . . . . . . . . . . . 258
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7 Moving Beyond Linearity 265
7.1 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . 266
7.2 Step Functions . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.3 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.4 Regression Splines . . . . . . . . . . . . . . . . . . . . . . . 271
7.4.1 Piecewise Polynomials . . . . . . . . . . . . . . . . . 271
7.4.2 Constraints and Splines . . . . . . . . . . . . . . . . 271
7.4.3 The Spline Basis Representation . . . . . . . . . . . 273
7.4.4 Choosing the Number and Locations
of the Knots . . . . . . . . . . . . . . . . . . . . . . 274
7.4.5 Comparison to Polynomial Regression . . . . . . . . 276
7.5 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . . 277
7.5.1 An Overview of Smoothing Splines . . . . . . . . . . 277
7.5.2 Choosing the Smoothing Parameter λ . . . . . . . . 278
7.6 Local Regression . . . . . . . . . . . . . . . . . . . . . . . . 280
7.7 Generalized Additive Models . . . . . . . . . . . . . . . . . 282
7.7.1 GAMs for Regression Problems . . . . . . . . . . . . 283
7.7.2 GAMs for Classification Problems . . . . . . . . . . 286
7.8 Lab: Non-linear Modeling . . . . . . . . . . . . . . . . . . . 287
7.8.1 Polynomial Regression and Step Functions . . . . . 288
7.8.2 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.8.3 GAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8 Tree-Based Methods 303
8.1 The Basics of Decision Trees . . . . . . . . . . . . . . . . . 303
8.1.1 Regression Trees . . . . . . . . . . . . . . . . . . . . 304
8.1.2 Classification Trees . . . . . . . . . . . . . . . . . . . 311
8.1.3 Trees Versus Linear Models . . . . . . . . . . . . . . 314
8.1.4 Advantages and Disadvantages of Trees . . . . . . . 315
8.2 Bagging, Random Forests, Boosting . . . . . . . . . . . . . 316
8.2.1 Bagging . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.2.2 Random Forests . . . . . . . . . . . . . . . . . . . . 319
8.2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 321
8.3 Lab: Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 323
8.3.1 Fitting Classification Trees . . . . . . . . . . . . . . 323
8.3.2 Fitting Regression Trees . . . . . . . . . . . . . . . . 327
8.3.3 Bagging and Random Forests . . . . . . . . . . . . . 328
8.3.4 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . 330
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9 Support Vector Machines 337
9.1 Maximal Margin Classifier . . . . . . . . . . . . . . . . . . . 338
9.1.1 What Is a Hyperplane? . . . . . . . . . . . . . . . . 338
9.1.2 Classification Using a Separating Hyperplane . . . . 339
9.1.3 The Maximal Margin Classifier . . . . . . . . . . . . 341
9.1.4 Construction of the Maximal Margin Classifier . . . 342
9.1.5 The Non-separable Case . . . . . . . . . . . . . . . . 343
9.2 Support Vector Classifiers . . . . . . . . . . . . . . . . . . . 344
9.2.1 Overview of the Support Vector Classifier . . . . . . 344
9.2.2 Details of the Support Vector Classifier . . . . . . . 345
9.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . 349
9.3.1 Classification with Non-linear Decision
Boundaries . . . . . . . . . . . . . . . . . . . . . . . 349
9.3.2 The Support Vector Machine . . . . . . . . . . . . . 350
9.3.3 An Application to the Heart Disease Data . . . . . . 354
9.4 SVMs with More than Two Classes . . . . . . . . . . . . . . 355
9.4.1 One-Versus-One Classification . . . . . . . . . . . . . 355
9.4.2 One-Versus-All Classification . . . . . . . . . . . . . 356
9.5 Relationship to Logistic Regression . . . . . . . . . . . . . . 356
9.6 Lab: Support Vector Machines . . . . . . . . . . . . . . . . 359
9.6.1 Support Vector Classifier . . . . . . . . . . . . . . . 359
9.6.2 Support Vector Machine . . . . . . . . . . . . . . . . 363
9.6.3 ROC Curves . . . . . . . . . . . . . . . . . . . . . . 365
9.6.4 SVM with Multiple Classes . . . . . . . . . . . . . . 366
9.6.5 Application to Gene Expression Data . . . . . . . . 366
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10 Unsupervised Learning 373
10.1 The Challenge of Unsupervised Learning . . . . . . . . . . . 373
10.2 Principal Components Analysis . . . . . . . . . . . . . . . . 374
10.2.1 What Are Principal Components? . . . . . . . . . . 375
10.2.2 Another Interpretation of Principal Components . . 379
10.2.3 More on PCA . . . . . . . . . . . . . . . . . . . . . . 380
10.2.4 Other Uses for Principal Components . . . . . . . . 385
10.3 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . 385
10.3.1 K-Means Clustering . . . . . . . . . . . . . . . . . . 386
10.3.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . 390
10.3.3 Practical Issues in Clustering . . . . . . . . . . . . . 399
10.4 Lab 1: Principal Components Analysis . . . . . . . . . . . . 401
10.5 Lab 2: Clustering . . . . . . . . . . . . . . . . . . . . . . . . 404
10.5.1 K-Means Clustering . . . . . . . . . . . . . . . . . . 404
10.5.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . 406
10.6 Lab 3: NCI60 Data Example . . . . . . . . . . . . . . . . . 407
10.6.1 PCA on the NCI60 Data . . . . . . . . . . . . . . . 408
10.6.2 Clustering the Observations of the NCI60 Data . . . 410
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Index 419


附件列表

AnIntroduction To Statistical Leaarning with Application in R.pdf

大小:11.42 MB

只需: 10 个论坛币  马上下载

AnIntroduction To Statistical Leaarning with Application in R

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-7-27 19:05:17
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群