二、误差既然绝大多数事情都同时包含偶然因素和必然因素,我们自然就想排除偶然去发现背后的必然。偶然的失败和成功都不必大惊小怪,我根据必然因素去发现判断,这总可以吧?可以,但是必须先理解误差。
历史上最早的科学家曾经不承认实验可以有误差,认为所有的测量必须都是精确的,把任何误差归结为错误。后来人们才渐渐意识到偶然因素是永远存在的,即使实验条件再精确也无法完全避免随机干扰的影响,所以做科学实验往往要测量多次,用取平均值之类的统计手段得出结果。
多次测量确实是一个排除偶然因素的好办法。国足输掉比赛以后经常抱怨偶然因素,裁判不公、主力不在、不适应客场气候,草皮太软、草皮太硬,等。关键是,如果经常输球,我还是可以得出国足是个弱队的结论。
即便科学实验也是如此,科学家哪怕是测量一个定义明确的物理参数,也不能给出最后的“真实答案”,他们总在测量结果上加一个误差范围。比如最近发现的希格斯粒子质量为125.3±0.4(stat)±0.5(sys)GeV.意思是质量125.3,但其中有0.4的统计误差,还有0.5的系统误差。真实的质量其实只有一个,但这个数字是多少,我不知道,它可以是这个误差范围内的任何一个数字。事实上,甚至可能是误差范围外的一个数字。这是因为误差范围是一个概率计算的结果,这个范围的意思是说物理学家相信真实值落在这个范围以外的可能性非常非常小。
所以真实值非常不易得。而且,别忘了科学实验是非常理想化的,大多数事情根本没有机会多次测量。若只能测一次,那么对这一次测量的结果该怎么解读?只能根据以往经验和类似案例,来估计一个大致的范围。
有了误差的概念,就要学会忽略误差范围内的任何波动。例如中国的统计数据,2013年全国居民收入的基尼系数为0.473,新闻报道说,该数据较2012年0.474略有回落,回落有多大?0.001,从统计角度来说,其实没有什么意义,可能测量的误差就大大超过0.001。