悬赏 4 个论坛币 未解决
我在做一个交通安全模型,事故为计量数据;均值 32.64912,而方差 738.8033;因此我打算选用负二项模型,但模型回归结果(我只看了一下R方)泊松要比负二项好得多,我检查数据发现存在个别数值偏大较多,请问在这种情况下我应该选择什么模型,负二项回归的alpha如何分析?谢谢各位!
Negative binomial regression Number of obs = 57
LR chi2(7) = 34.55
Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -237.95777 Pseudo R2 = 0.0677
------------------------------------------------------------------------------
accidents | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
numbiansu | 1.433067 .3351097 4.28 0.000 .7762637 2.08987
inmedunpaved | -.4624638 .243723 -1.90 0.058 -.9401522 .0152245
usehov | .5107766 .273323 1.87 0.062 -.0249265 1.04648
barcable | .7520292 .3034703 2.48 0.013 .1572384 1.34682
surbrideck | -1.636123 .4081964 -4.01 0.000 -2.436173 -.8360728
inmedsg | .7364986 .2834705 2.60 0.009 .1809066 1.292091
population1 | .689152 .2839289 2.43 0.015 .1326617 1.245642
_cons | 1.775044 .3661459 4.85 0.000 1.057411 2.492676
-------------+----------------------------------------------------------------
/lnalpha | -.9745865 .21755 -1.400977 -.5481963
-------------+----------------------------------------------------------------
alpha | .3773484 .0820921 .2463563 .5779914
------------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01) = 375.44 Prob>=chibar2 = 0.000
Poisson regression Number of obs = 57
LR chi2(16) = 742.14
Prob > chi2 = 0.0000
Log likelihood = -356.05155 Pseudo R2 = 0.5103
-------------------------------------------------------------------------------------------
accidents | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------------------+----------------------------------------------------------------
numbiansu | 1.328459 .1221327 10.88 0.000 1.089083 1.567835
innershoulderwidthft | .0757376 .0374595 2.02 0.043 .0023183 .149157
usehov | .6441821 .090765 7.10 0.000 .4662859 .8220783
sur7 | -.3039586 .0679214 -4.48 0.000 -.437082 -.1708352
surbrideck | -1.723786 .1817253 -9.49 0.000 -2.079961 -1.367611
down_aadt | .0000149 2.31e-06 6.44 0.000 .0000103 .0000194
barmbb | -.271133 .0922192 -2.94 0.003 -.4518793 -.0903867
barcable | .5173714 .0982123 5.27 0.000 .3248789 .709864
lengthbiansu | .0007678 .0004936 1.56 0.120 -.0001997 .0017353
population1 | .5193249 .0931751 5.57 0.000 .336705 .7019447
up_aadt | 5.36e-06 2.33e-06 2.30 0.022 7.88e-07 9.94e-06
lanenumber | -.1805165 .0643169 -2.81 0.005 -.3065753 -.0544578
inmedpaved | .5316509 .1081213 4.92 0.000 .319737 .7435648
inmedsg | .806511 .1141771 7.06 0.000 .5827281 1.030294
speedlimit | .4215773 .2010589 2.10 0.036 .0275091 .8156455
innershouldtreatedwidthft | -.0841996 .0350738 -2.40 0.016 -.1529429 -.0154562
_cons | .2712583 .3134897 0.87 0.387 -.3431703 .8856869
-------------------------------------------------------------------------------------------