决策规则
下面进入投票环节。找到与测试样本点最近的6个训练样本点的标签y是什么。可以查不同类别的点有多少个。
将数组中的元素和元素出现的频次进行统计
from collections import Counter
votes = Counter(topK_y)
votes
输出:一个字典,原数组中值为0的个数为1,值为1的个数有为5Counter({0:1, 1:5})
# Counter.most_common(n) 找出票数最多的n个元素,返回的是一个列表,列表中的每个元素是一个元组,元组中第一个元素是对应的元素是谁,第二个元素是频次votes.most_common(1)
输出:[(1,5)]
predict_y = votes.most_common(1)[0][0]
predict_y
输出:1
得到预测的y值是1
自实现完整工程代码
我们已经在jupyter notebook中写好了kNN算法,下面我们在外部进行封装。
相关代码可以在 https://github.com/japsonzbz/ML_Algorithms 中看到
import numpy as npimport math as sqrtfrom collections import Counterclass kNNClassifier:
def __init__(self, k):
"""初始化分类器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0], \ "the size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0], \ "the size of X_train must be at least k"
self._X_train = X_train
self._y_train = y_train return self def predict(self,X_predict):
"""给定待预测数据集X_predict,返回表示X_predict结果的向量"""
assert self._X_train is not None and self._y_train is not None, \ "must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \ "the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict] return np.array(y_predict) def _predict(self, x):
distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train for i in nearest]
votes = Counter(topK_y) return votes.most_common(1)[0][0] def __repr__(self):
return "kNN(k=%d)" % self.k
当我们写完定义好自己的kNN代码之后,可以在jupyter notebook中使用魔法命令进行调用:
%run myAlgorithm/kNN.py
knn_clf = kNNClassifier(k=6)
knn_clf.fit(X_train, y_train)
X_predict = x.reshape(1,-1)
y_predict = knn_clf.predict(X_predict)
y_predict
输出:array([1])
现在我们就完成了一个sklearn风格的kNN算法,但是实际上,sklearn封装的算法比我们实现的要复杂得多。

sklearn中的kNN
代码
对于机器学习来说,其流程是:训练数据集 -> 机器学习算法 -fit-> 模型 输入样例 -> 模型 -predict-> 输出结果
我们之前说过,kNN算法没有模型,模型其实就是训练数据集,predict的过程就是求k近邻的过程。
我们使用sklearn中已经封装好的kNN库。你可以看到使用有多么简单。
from sklearn.neighbors import KNeighborsClassifier# 创建kNN_classifier实例kNN_classifier = KNeighborsClassifier(n_neighbors=6)# kNN_classifier做一遍fit(拟合)的过程,没有返回值,模型就存储在kNN_classifier实例中kNN_classifier.fit(X_train, y_train)# kNN进行预测predict,需要传入一个矩阵,而不能是一个数组。reshape成一个二维数组,第一个参数是1表示只有一个数据,第二个参数-1,numpy自动决定第二维度有多少y_predict = kNN_classifier.predict(x.reshape(1,-1))
y_predict
输出:array([1])
在kNN_classifier.fit(X_train, y_train)这行代码后其实会有一个输出:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=6, p=2,
weights='uniform')
参数
class
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)
我们研究一下参数:
n_neighbors: int, 可选参数(默认为 5)。用于kneighbors查询的默认邻居的数量
weights(权重): str or callable(自定义类型), 可选参数(默认为 ‘uniform’)。用于预测的权重参数,可选参数如下:
uniform : 统一的权重. 在每一个邻居区域里的点的权重都是一样的。
distance : 权重点等于他们距离的倒数。
使用此函数,更近的邻居对于所预测的点的影响更大。
[callable] : 一个用户自定义的方法,此方法接收一个距离的数组,然后返回一个相同形状并且包含权重的数组。
algorithm(算法): {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 可选参数(默认为 ‘auto’)。计算最近邻居用的算法:
ball_tree 使用算法BallTree
kd_tree 使用算法KDTree
brute 使用暴力搜索
auto 会基于传入fit方法的内容,选择最合适的算法。
注意 : 如果传入fit方法的输入是稀疏的,将会重载参数设置,直接使用暴力搜索。
leaf_size(叶子数量): int, 可选参数(默认为 30)。传入BallTree或者KDTree算法的叶子数量。此参数会影响构建、查询BallTree或者KDTree的速度,以及存储BallTree或者KDTree所需要的内存大小。此可选参数根据是否是问题所需选择性使用。
p: integer, 可选参数(默认为 2)。用于Minkowski metric(闵可夫斯基空间)的超参数。p = 1, 相当于使用曼哈顿距离,p = 2, 相当于使用欧几里得距离],对于任何 p ,使用的是闵可夫斯基空间。