
作者 | Japson
来源 | 木东居士
前言
天下苦数学久矣!
对于很多想要入门机器学习的工程师来说,数学是通往AI道路上的第一支拦路虎。一些已经工作的同学不得不捡起早已还给老师的数学知识,勉强拿起《统计学习方法》、《西瓜书》等入门书籍钻研。或被一个个复杂的机公式劝退,或记下一堆公式定理之后却不知道和代码有什么关系,茫然不知所措。
其实对于工程师来说,最直接的入门方法就是coding。
本系列从最简单的机器学习算法“K-近邻算法”开始,通过代码走进机器学习的大门,搞定传统机器学习算法。
首先会介绍算法的基本原理,然后依据原理手动实现算法,最后使用sklearn中提供的机器学习库完成一些小demo。不用担心,相关的机器学习概念以及算法原理也会穿插其中,帮助你以“代码->原理->代码”这种迭代的方式完成学习。
需要:
掌握Python语言,能够使用Numpy、Pandas等工具库。
安装Anaconda
不要求对机器学习算法以及相关概念有很深刻的了解,因为在文章中会对首次出现的概念进行介绍。
子曰:“先行其言而后从之”。行动永远是引发改变的第一步,话不多说,先让我们码起来吧!
初探kNN算法
为什么选择kNN
为什么说KNN算法是机器学习的敲门砖?
首先KNN算法思想简单朴素,容易理解,几乎不需要任何数学知识。这一点使得KNN算法非常适合入门。
其次,KNN算法也很好用,理论成熟,简单粗暴,既可以用来做分类(天然支持多分类),也可以用来做回归。并且与朴素贝叶斯之类的算法相比,由于其对数据没有假设,因此准确度高,对异常点不敏感。
最后,kNN算法简单,但是可以解释机器学习算法过程中的很多细节问题,能够完整的刻画机器学习应用的流程。
当然KNN算法也有缺点,我们会在最后进行总结。
kNN思想简介
鲁迅曾经说过:“想要了解一个人,就去看看他的朋友”。因此,KNN算法是鲁迅发明的。
kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。
贴出一张从百度百科上找的一张图,我们可以直观地感受到这朴素的思想:我们要判断Xu 是什么颜色的,找到与其距离最近的5个点,有4个是红色的,有1个是绿色的。因此我们认为Xu是属于红色的集合

因此我们说:
在一个给定的类别已知的训练样本集中,已知样本集中每一个数据与所属分类的对应关系(标签)。在输入不含有标签的新样本后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似的k个数据(最近邻)的分类标签。通过多数表决等方式进行预测。即选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
K近邻法不具有显式的学习过程,而是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。
kNN算法流程
通过理解算法思想,可以将其简化为“找邻居+投票”。K近邻法使用的模型,实际上是特征空间的划分。模型由三个基本要素决定:
其中两个实例点之间的距离反映了相似程度。一般来说使用欧氏距离来计算。
梳理kNN算法流程如下:
- 计算测试对象到训练集中每个对象的距离
- 按照距离的远近排序
- 选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居
- 统计这k个邻居的类别频率
- k个邻居里频率最高的类别,即为测试对象的类别
