两分钟说清楚
深度学习
深度学习的概念最早由多伦多大学的 G.E.Hinton 等于 2006 年提出,指基于样本数据通过一定的训练方法得到包含多个层级的深度网络结构的机器学习过程。传统的神经网络随机初始化网络中的权值,导致网络很容易收敛到局部最小值,为解决这一问题,Hinton 提出使用无监督预训练方法优化网络权值的初值,再进行权值微调的方法,拉开了深度学习的序幕。
深度学习是机器学习的一种,概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的
神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。
深度学习之所以被称为“深度”,是相对支撑向量机 (support vector machine,SVM)、提升方法 (boosting)、最大熵方法等“浅层学习”方法而言的,深度学习所学得的模型中,非线性操作的层级数更多。浅层学习依靠人工经验抽取样本特征,网络模型学习后获得的是没有层次结构的单层特征;而深度学习通过对原始信号进行逐层特征变换,将样本在原空间的特征表示变换到新的特征空间,自动地学习得到层次化的特征表示,从而更有利于分类或特征的可视化。深度学习理论的另外一个理论动机是:如果一个函数可用 k 层结构以简洁的形式表达,那么用 k-1 层的结构表达则可能需要指数级数量的参数 (相对于输入信号),且泛化能力不足。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得
人工智能相关技术取得了很大进步。