不知不觉,时间序列分析一课已上了四分之一或三分之一,我称之为第一阶段,是进一步分析和解决时序问题的奠基性阶段。这课上起来是很有难度的,授课主要是搬运知识,并不创造知识,授课对象是本科生,如何深入浅出地使本科阶段的同学明白无误,却是不亚于知识创造的一个重大挑战。
第一阶段主要是前四讲(第一讲又分上下),第二阶段是对第一阶段的补充完善(待发布),第三、四阶段待定。
Update the Teaching schedule
Lec1: 4 Methods to Solve Linear Defference Equations
1.1 Solving DEs with Constant Coefficients and Constant Terms
1.2 Solving DEs with constant Coefficients and Variable Terms
Lec2: Covariance-Stationary ARMA Models
2.1 Stationary Restrictions for ARMA(p, q)
2.2 The Autocorrelation Function
Lec3: Covariance-Stationary Vector Processes
3.1 VAR(p)→VAR(1)
3.2 Stationary Restrictions for Vector Processes
Lec4: Forecasts Based on Conditional Expectation
4.1 Predicting ARMA
4.2 Forecasts from VAR
Lec5: Forecasts Based on Linear Projection
5.1 Linear Projection vs. Conditional Expectation
5.2 Linear Projection vs. OLS Regression
5.3 Wold Decomposition Theorem
Lec6: Calibration and Simulation
6.1 Parameter Calibration
6.2 Impulse-Response/Prediction Simulation
Lec7: OLS Estimation in Time Series Analysis
Lec8: ML Estimation in Time Series Analysis
Lec9: GMM Estimation in Time Series Analysis
Lec10: Bayesian Estimation in Time Series Analysis
\vdots
附件列表