11.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
12 On the Pricing of Corporate Debt: The Risk Structure of Interest Rates 303
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.2 On The Pricing of Corporate Liabilities . . . . . . . . . . . . . . . . . 304
12.3 On Pricing “Risky” Discount Bonds . . . . . . . . . . . . . . . . . . . 307
12.4 A Comparative Statics Analysis of the Risk Structure . . . . . . . . . 309
12.5 On the Modigliani-Miller Theorem with Bankruptcy . . . . . . . . . . 317
12.6 On the Pricing of Risky Coupon Bonds . . . . . . . . . . . . . . . . . 320
12.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
13 On the Pricing of Contingent Claims and theModigliani-Miller Theorem323
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
13.2 A general derivation of a contingent claim price . . . . . . . . . . . . 324
13.3 On the Modigliani-Miller Theorem with Bankruptcy . . . . . . . . . . 328
13.4 Applications of Contingent-Claims Analysis in Corporate Finance . . 331
14 Financial Intermediation in the Continuous-Time Model 337
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
14.2 Derivative-Security Pricing with Transactions Costs . . . . . . . . . . 341
14.3 Production Theory for Zero-Transaction-Cost Financial Intermediaries 347
14.4 Risk Management for Financial Intermediaries . . . . . . . . . . . . . 354
14.5 On the Role of Efficient Financial Intermediation in the Continuous-
Time Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
14.6 Afterword: Policy and Strategy in Financial Intermediation . . . . . . 368
V An Intertemporal Equilibrium Theory of Finance 373
15 An Intertemporal Capital Asset Pricing Model 374
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
15.2 Capital Market Structure . . . . . . . . . . . . . . . . . . . . . . . . . 376
15.3 Asset Value and Rate of Return Dynamics . . . . . . . . . . . . . . . 377
15.4 Preference Structure and Budget Equation Dynamics . . . . . . . . . 381
15.5 The Equations of Optimality: The Demand Functions for Assets . . . 382
15.6 Constant Investment Opportunity Set . . . . . . . . . . . . . . . . . . 385
15.7 Generalized Separation: A Three-Fund Theorem . . . . . . . . . . . . 386
15.8 The Equilibrium Yield Relationship among Assets . . . . . . . . . . . 388
15.9 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
15.10An (m + 2)-Fund Theorem and the Security Market Hyperplane . . . 393
15.11The Consumption-Based Capital Asset Pricing Model . . . . . . . . . 403
15.12Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
16 A Complete-Markets General Equilibrium Theory of Finance in Contin-
uous Time 413
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
16.2 Financial Intermediation with Dynamically-Complete Markets . . . . 416
16.3 Optimal Consumption and Portfolio Rules with Dynamically-Complete
Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
16.4 General Equilibrium: The Case of Pure Exchange . . . . . . . . . . . 432
16.5 General Equilibrium: The Case of Production . . . . . . . . . . . . . 437
16.6 A General Equilibrium Model in which the Capital Asset Pricing
Model Obtains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
16.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
VI Applications of the Continuous-Time Model to Selected Issues in Public Fi-
nance: Long-Run Economic Growth, Public Pension Plans, Deposit Insurance,
Loan Guarantees, and Endowment Management for Universities 455
17 An Asymptotic Theory of Growth Under Uncertainty 456
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
17.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
17.3 The Steady-State Distribution for k . . . . . . . . . . . . . . . . . . . 461
17.4 The Cobb-Douglas/Constant Savings Function Economy . . . . . . . 462
17.5 The Stochastic Ramsey Problem . . . . . . . . . . . . . . . . . . . . . 466
18 On Consumption-Indexed Public Pension Plans 477
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
18.2 A Simple Intertemporal Equilibrium Model . . . . . . . . . . . . . . . 480
18.3 On the Merits and Feasibility of a Consumption-Indexed Public Plan . 486
19 An Analytic Derivation of the Cost of Loan Guarantees and Deposit In-
surance: An Application of Modern Option Pricing Theory 493
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
19.2 A model for pricing deposit insurance . . . . . . . . . . . . . . . . . . 495
20 On the Cost of Deposit Insurance When There are Surveillance Costs 501
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
20.2 Assumptions of the Model . . . . . . . . . . . . . . . . . . . . . . . . 502
20.3 The Evaluation of FDIC Liabilities . . . . . . . . . . . . . . . . . . . 503
20.4 The Evaluation of Bank Equity . . . . . . . . . . . . . . . . . . . . . . 508
20.5 On the Equilibrium Deposit Rate . . . . . . . . . . . . . . . . . . . . . 509
20.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
21 Optimal Investment Strategies for University Endowment Funds 513
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
21.2 Overview of Basic Insights and Prescriptions for Policy . . . . . . . . 514
21.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
21.4 Optimal Endowment Management with Other Sources of Income . . 526