基于AI的风控应用
一个典型的风控体系,包含了贷前、贷中和贷后三个阶段,每个阶段都有相应的研究问题。
贷前主要解决用户准入和风险定价问题,即面对一个新申请的进件用户,判断用户是否符合产品的放款条件及相应的放款额度、价格、期限等问题。主要包括三类问题:
1)反欺诈识别:根据用户提交的材料进行身份核实,确保用户不存在欺诈行为;
2)信用评级:与传统银行的信用评分卡原理一致,综合用户的社交数据、行为数据、收入数据等,判定用户的信用风险等级,评估用户的履约能力;
3)风险定价:根据用户的负债能力和收入稳定性,判断用户可承担的月供金额,确定用户的放款额度、偿还期限等,并根据用户风险等级确定用户的费率。这三个问题往往是互相影响、互为前提的。比如,对一个月收入3000的用户来说,月供在1000左右,用户可能履约良好,信用等级良好;但如果月供提高到4000,严重超出了其收入水平,即便不是有意欺诈,也可能出现断供的情况,从而得到比较差的信用等级。