Table of Contents
Summary .XIII
1 Introduction 1
2 Bayesian Statistics and MCMC Methods 9
2.1 Bayesian inference 9
2.2 MCMC methods 10
2.2.1 The Gibbs sampler 11
2.2.2 The Metropolis-Hastings algorithm 12
2.2.3 Dealing with the MCMC output 13
3 Bayesian Estimation of the GARCH(1; 1) Model with
Normal Innovations 17
3.1 The model and the priors 17
3.2 Simulating the joint posterior 18
3.2.1 Generating vector _ 20
3.2.2 Generating parameter _ 20
3.3 Empirical analysis 22
3.3.1 Model estimation 24
3.3.2 Sensitivity analysis 30
3.3.3 Model diagnostics 32
3.4 Illustrative applications 34
3.4.1 Persistence 34
3.4.2 Stationarity 36
4 Bayesian Estimation of the Linear Regression Model with
Normal-GJR(1; 1) Errors 39
4.1 The model and the priors 40
4.2 Simulating the joint posterior 41
4.2.1 Generating vector  41
4.2.2 Generating the GJR parameters 42
Generating vector _ 43
Generating parameter _ 44
4.3 Empirical analysis 44
4.3.1 Model estimation 46
4.3.2 Sensitivity analysis 52
4.3.3 Model diagnostics 52
4.4 Illustrative applications 53
5 Bayesian Estimation of the Linear Regression Model with
Student-t-GJR(1; 1) Errors 55
5.1 The model and the priors 56
5.2 Simulating the joint posterior 59
5.2.1 Generating vector  59
5.2.2 Generating the GJR parameters 60
Generating vector _ 61
Generating parameter _ 62
5.2.3 Generating vector $ 62
5.2.4 Generating parameter _ 63
5.3 Empirical analysis 64
5.3.1 Model estimation 64
5.3.2 Sensitivity analysis 70
5.3.3 Model diagnostics 70
5.4 Illustrative applications 71
6 Value at Risk and Decision Theory 73
6.1 Introduction 73
6.2 The concept of Value at Risk 76
6.2.1 The one-day ahead VaR under the GARCH(1; 1) dynamics 77
6.2.2 The s-day ahead VaR under the GARCH(1; 1) dynamics 77
6.3 Decision theory 85
6.3.1 Bayes point estimate 85
6.3.2 The Linex loss function 86
6.3.3 The Monomial loss function 90
6.4 Empirical application: the VaR term structure 91
6.4.1 Data set and estimation design 92
6.4.2 Bayesian estimation 94
6.4.3 The term structure of the VaR density 95
6.4.4 VaR point estimates 96
6.4.5 Regulatory capital 100
6.4.6 Forecasting performance analysis 102
6.5 The Expected Shortfall risk measure 104