原版PDF
Applied Stochastic Processes and Control for
Jump-Diffusions: Modeling, Analysis and
Computation
Floyd B. Hanson
2007 by the Society for Industrial and Applied Mathematics.
Contents
Preface xvii
1 Stochastic Jump and Diffusion Processes 1
1.1 Poisson and Wiener Processes Basics . . . . . . . . . . . . . . . 1
1.2 Wiener Process Basic Properties . . . . . . . . . . . . . . . . . . 3
1.3 More Wiener Process Moments . . . . . . . . . . . . . . . . . . 6
1.4 Wiener Process Non-Differentiability . . . . . . . . . . . . . . . 9
1.5 Wiener Process Expectations Conditioned on Past . . . . . . . . 10
1.6 Poisson Process Basic Properties . . . . . . . . . . . . . . . . . . 11
1.7 Poisson Process Moments . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Poisson Poisson Zero-One Jump Law . . . . . . . . . . . . . . . 18
1.9 Temporal, Non-Stationary Poisson Process . . . . . . . . . . . . 21
1.10 Poisson Process Expectations Conditioned on Past . . . . . . . 24
1.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Stochastic Integration for Diffusions 31
2.1 Ordinary or Riemann Integration . . . . . . . . . . . . . . . . . 32
2.2 Stochastic Integration in W(t): The Foundations . . . . . . . . 35
2.3 Stratonovich and other Stochastic Integration Rules . . . . . . . 56
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 Stochastic Integration for Jumps 65
3.1 Stochastic Integration in P(t): The Foundations . . . . . . . . 65
3.2 Stochastic Jump Integration Rules and Expectations: . . . . . . 77
3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4 Stochastic Calculus for Jump-Diffusions 83
4.1 Diffusion Process Calculus Rules . . . . . . . . . . . . . . . . . . 83
4.1.1 Functions of Diffusions Alone, G(W(t)) . . . . . . 84
4.1.2 Functions of Diffusions and Time . . . . . . . . . . . 87
4.1.3 Itˆo Stochastic Natural Exponential Construction . . 90
4.1.4 Transformations of Linear Diffusion SDEs: . . . . . 94
4.1.5 Functions of General Diffusion States and Time . . 100
4.2 Poisson Jump Process Calculus Rules . . . . . . . . . . . . . . . 101
4.2.1 Jump Calculus Rule for h(dP(t)) . . . . . . . . . . . 101
4.2.2 Jump Calculus Rule for H(P(t), t) . . . . . . . . . . 102
4.2.3 Jump Calculus Rule with General State . . . . . . . 105
4.2.4 Transformations of Linear Jump with Drift SDEs . . 106
4.3 Jump-Diffusion Rules and SDEs . . . . . . . . . . . . . . . . . . 108
4.3.1 Jump-Diffusion Conditional Infinitesimal Moments . 109
4.3.2 Stochastic Jump-Diffusion Chain Rule . . . . . . . . 109
4.3.3 Linear Jump-Diffusion SDEs . . . . . . . . . . . . . 111
4.3.4 SDE Models Exactly Transformable . . . . . . . . . 121
4.4 Poisson Noise is White Noise Too! . . . . . . . . . . . . . . . . . 123
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5 Stochastic Calculus for General Markov SDEs 131
5.1 Space-Time Poisson Process . . . . . . . . . . . . . . . . . . . . 132
5.2 State-Dependent Generalizations . . . . . . . . . . . . . . . . . . 141
5.2.1 State-Dependent Poisson Processes . . . . . . . . . . 141
5.2.2 State-Dependent Jump-Diffusion SDEs . . . . . . . 143
5.2.3 Linear State-Dependent SDEs . . . . . . . . . . . . 144
5.3 Multi-Dimensional Markov SDE . . . . . . . . . . . . . . . . . . 162
5.3.1 Conditional Infinitesimal Moments . . . . . . . . . . 163
5.3.2 Stochastic Chain Rule in Multi-Dimensions . . . . . 165
5.4 Distributed Jump SDE Models Exactly Transformable . . . . . 166
5.4.1 Jump SDE Models Exactly Transformable . . . . . . 167
5.4.2 Vector Jump SDE Models Exactly Transformable . 167
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6 Stochastic Dynamic Programming 171
6.1 Stochastic Optimal Control Problem . . . . . . . . . . . . . . . 171
6.2 Bellman’s Principle of Optimality . . . . . . . . . . . . . . . . . 174
6.3 HJB Equation of Stochastic Dynamic Programming . . . . . . . 178
6.4 Linear Quadratic Jump-Diffusion (LQJD) Problem . . . . . . . 182
6.4.1 LQJD in Control Only (LQJD/U) Problem . . . . . 182
6.4.2 LLJD/U or the Case C2 ≡ 0: . . . . . . . . . . . . . 185
6.4.3 Canonical LQJD Problem . . . . . . . . . . . . . . . 186
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7 Kolmogorov Equations 195
7.1 Dynkin’s Formula and the Backward Operator . . . . . . . . . . 195
7.2 Backward Kolmogorov Equations . . . . . . . . . . . . . . . . . 198
7.3 Forward Kolmogorov Equations . . . . . . . . . . . . . . . . . . 201
7.4 Multi-dimensional Backward and Forward Equations . . . . . . 205
7.5 Chapman-Kolmogorov Equation for Markov Processes . . . . . 208
7.6 Jump-Diffusion Boundary Conditions . . . . . . . . . . . . . . . 208
7.6.1 Absorbing Boundary Condition . . . . . . . . . . . . 208
. C35