全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
10996 10
2006-05-01

请教:时间序列数据在差分得出新的方程后还需要进行异方差,自相关和多重共线性的检验么?

望各位大侠不吝赐教!~谢谢!!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2006-5-2 00:20:00

In regression analysis using time series, autocorrelation of the residuals is a problem, and leads to an upward bias in estimates of the statistical significance of coefficient estimates, such as the T statistic. The standard test for the presence of autocorrelation is the Durbin-Watson statistic or, if the explanatory variables include a lagged dependent variable, Durbin's h statistic.

Responses to autocorrelation include differencing of the data and the use of lag structures in estimation.

So Answer to your question is YES!

[此贴子已经被作者于2006-5-2 0:22:09编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-5-2 06:33:00

谢谢楼上的朋友.
对Time series data来说,好象一般只需要检验autocorrelation和multicollinearity.至于heteroscedasticity虽然也能在Time series data里发生,但一般是针对cross-sectional data.

[此贴子已经被作者于2006-5-2 6:44:07编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-5-2 07:44:00
Chen Min and An Hongzhi (1999). A test of conditional heteroscedasticity in time series. Science in China (series A), 41, 26-37. (SCI)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-5-2 07:45:00

Estimated by the least absolute deviation approach: Diagnostic checking for time series models with conditional heteroscedasticity

Guodong Li and Wai Keung Li
Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road, Hong Kong

[此贴子已经被作者于2006-5-2 7:51:12编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2006-5-2 07:46:00

Conditional Heteroscedasticity in Time Series of Stock Returns:

Evidence and Forecasts

Abstract

This article presents new evidence about the time-series behavior of stock prices. Daily return series exhibit significant levels of second-order dependence, and they cannot be modeled as linear white-noise processes. A reasonable return-generating process is empirically shown to be a first-order autoregressive process with conditionally heteroskedastic innovations. In particular, generalized autoregressive conditional heteroskedastic GARCH (1, 1) processes fit to data very satisfactorily. Various out-of-sample forecasts of monthly return variances are generated and compared statistically. Forecasts based on the GARCH model are found to be superior. Copyright 1989 by University of Chicago Press.

[此贴子已经被作者于2006-5-2 7:47:28编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群