全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
10995 3
2010-08-10
以下是程序运行后显示的:

LR chi2(9)=34.82    Prob > chi2=0.0001

Log likelihood =30.79076    Pseudo R2=-1.3011


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-8-30 23:57:59
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-4-3 21:48:02
想知道结果
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-3-17 09:36:27
Concerning the pseudo-R2, we use the formula

        pseudo-R2 = 1 − L1/L0
where L0 and L1 are the constant-only and full model log-likelihoods, respectively.

For discrete distributions, the log likelihood is the log of a probability, so it is always negative (or zero). Thus 0 ≥ L1 ≥ L0, and so 0 ≤ L1/L0 ≤ 1, and so 0 ≤ pseudo-R2 ≤1 for DISCRETE distributions.

For continuous distributions, the log likelihood is the log of a density. Since density functions can be greater than 1 (cf. the normal density at 0), the log likelihood can be positive or negative. Similarly, mixed continuous/discrete likelihoods like tobit can also have a positive log likelihood.

If L1 > 0 and L0 < 0, then L1/L0 < 0, and 1 − L1/L0 > 1.

If L1 > L0 > 0 and then L1/L0 > 1, and 1 − L1/L0 < 0.

Hence, this formula for pseudo-R2 can give answers > 1 or < 0 for continuous or mixed continuous/discrete likelihoods like tobit.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群