本人对用EVIEWS求回归方程属于刚入门级,我想问问大家在做回归方程参数估计时,怎样去判断这个模型到底拟合的好或不好呢?以下是我做的一些结果,真心诚意向大家求教,万分感谢!
Dependent Variable: FJ |
Method: Least Squares |
Date: 10/26/10
Time: 22:20 |
Sample: 2005 2009 |
Included observations: 5 |
FJ=C(1)+C(2)*CZH |
| Coefficient | Std. Error | t-Statistic | Prob.
|
C(1) | -7569.591 | 1318.594 | -5.740651 | 0.0105 |
C(2) | 245.6379 | 35.62252 | 6.895579 | 0.0062 |
R-squared | 0.940652 |
Mean dependent var
| 1514.099 |
Adjusted R-squared | 0.920869 |
S.D. dependent var
| 460.5726 |
S.E. of regression | 129.5602 |
Akaike info criterion
| 12.85534 |
Sum squared resid | 50357.56 |
Schwarz criterion
| 12.69912 |
Log likelihood | -30.13836 |
F-statistic
| 47.54901 |
Durbin-Watson stat | 1.821038 |
Prob(F-statistic)
| 0.006249 |
我目前仅知道
R-squared趋近于1以及两个参数的相伴概率以及F的相伴概率越趋近于0,可以大体上判断模型的好坏,不知道这种理解是否正确?还需要看哪些变量呢?
请赐教!