全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管百科 爱问频道
7198 3
2011-02-15
伊藤积分是属于勒贝格积分中的一类吗?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-2-15 16:34:19
伊藤积分  这是对布朗运动定义的一种随机积分。布朗运动的样本函数虽然连续,但几乎所有的样本函数非有界变差,甚至处处不可微,因而无法按样本函数来定义通常的黎曼-斯蒂尔杰斯积分(简称RS积分)或勒贝格-斯蒂尔杰斯积分(简称LS积分)。一般来说,RS积分定义中的达布和不会以概率1收敛到一定的极限,但在适当的条件下,达布和的均方极限存在。伊藤清正是利用这一性质定义了对布朗运动的随机积分。设{,t∈R+=【0,∞)}是一族上升的子σ域,布朗运动W={W(t),t∈R+}是()鞅。如果样本连续的有界随机过程φ={φ(t),t∈R+}是()适应的,那么当有限区间【α,b】嶅R+的分割 的直径趋于零时,达布和 的均方极限存在,记作,它称为φ在区间【α,b】上对W 的伊藤积分。值得注意的是,在达布和的构造中,被积过程在【tk-1,tk】上的取值点不是随意一点,而只能是它的左端点 tk-1。这是一个严格的限制。完全不加限制时其极限不存在,如作其他的限制,则可能得到另外的极限,从而定义出另外的积分,但最有用的是这种限制。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-3-24 13:47:56
谢谢!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2015-8-21 04:42:32
谢谢楼上的解答!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群