摘要翻译:
研究了非守恒n分量序参量与守恒标量密度耦合的三维随机各向异性磁体的弛豫临界动力学。在随机各向异性磁体中,结构无序以随机取向的局部淬火各向异性轴的形式存在。当各向异性轴沿n维超立方体边缘随机分布时,渐近动力学临界性质与随机位置Ising模型一致。然而,结构无序会对非渐近临界动力学产生相当大的影响。我们用场论重整化群分析方法在二回路阶上研究了这一现象。我们研究了临界慢化,得到了序参量和标量密度的有效临界指数和渐近临界指数的定量估计。结果预测了有效临界指数接近渐近区域的复杂情况。
---
英文标题:
《Model C critical dynamics of random anisotropy magnets》
---
作者:
M. Dudka, R. Folk, Yu. Holovatch, G. Moser
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study the relaxational critical dynamics of the three-dimensional random anisotropy magnets with the non-conserved n-component order parameter coupled to a conserved scalar density. In the random anisotropy magnets the structural disorder is present in a form of local quenched anisotropy axes of random orientation. When the anisotropy axes are randomly distributed along the edges of the n-dimensional hypercube, asymptotical dynamical critical properties coincide with those of the random-site Ising model. However structural disorder gives rise to considerable effects for non-asymptotic critical dynamics. We investigate this phenomenon by a field-theoretical renormalization group analysis in the two-loop order. We study critical slowing down and obtain quantitative estimates for the effective and asymptotic critical exponents of the order parameter and scalar density. The results predict complex scenarios for the effective critical exponent approaching an asymptotic regime.
---
PDF链接:
https://arxiv.org/pdf/704.0896