摘要翻译:
在[Phys.Rev.Lett.\TextBF{73},3395(1994)]模型中,驱动二阶纯噪声诱导有序相变(NIPT)的局域非相关乘性噪声被假定为高斯白相变。这一现象的潜在科学和技术兴趣要求对噪声的统计和频谱的影响进行研究。如果这些噪声是由白噪声驱动的随机微分方程(SDE)动态生成的,则这一任务变得容易。其中一个例子是Ornstein-Uhlenbeck噪声,它是平稳的,具有高斯的pdf和一个由自相关时间(\tau)减小的方差,它对NIPT相图的影响已经研究过了。另一种情况是,当平稳pdf是(有色)Tsallis'(q)--\emph{高斯}时,它对于(q>1)是\emph{胖尾}分布,对于(q<1)是\emph{紧致支持}分布,允许对偏离高斯统计量的影响进行有控制的探索。正如以前对随机共振和其他现象所做的那样,我们现在利用这个工具来研究--在一个简单的平均场近似内,重点是\emph{序参量}和\emph{磁化率}--噪声的统计量和频谱对NIPT的联合影响。即使对于相对较小(\tau)的噪声,脂肪尾噪声分布((q>1))抵消了自相关效应,而紧支撑噪声分布((q<1))增强了自相关效应。此外,在最后一种情况下,还可以看到对敏感性的有趣影响。
---
英文标题:
《Noise-induced phase transitions: Effects of the noises' statistics and
  spectrum》
---
作者:
Roberto R. Deza (1), Horacio S. Wio (2), and Miguel A. Fuentes (3)
  ((1) Departamento de F\'isica, Facultad de Ciencias Exactas y Naturales,
  Universidad Nacional de Mar del Plata, Argentina, (2) Instituto de F\'isica
  de Cantabria (Universidad de Cantabria and CSIC), Santander, Spain, (3)
  Centro At\'omico Bariloche (CNEA), Argentina, and Santa Fe Institute, Santa
  Fe, NM, USA)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
  The local, uncorrelated multiplicative noises driving a second-order, purely noise-induced, ordering phase transition (NIPT) were assumed to be Gaussian and white in the model of [Phys. Rev. Lett. \textbf{73}, 3395 (1994)]. The potential scientific and technological interest of this phenomenon calls for a study of the effects of the noises' statistics and spectrum. This task is facilitated if these noises are dynamically generated by means of stochastic differential equations (SDE) driven by white noises. One such case is that of Ornstein--Uhlenbeck noises which are stationary, with Gaussian pdf and a variance reduced by the self-correlation time (\tau), and whose effect on the NIPT phase diagram has been studied some time ago. Another such case is when the stationary pdf is a (colored) Tsallis' (q)--\emph{Gaussian} which, being a \emph{fat-tail} distribution for (q>1) and a \emph{compact-support} one for (q<1), allows for a controlled exploration of the effects of the departure from Gaussian statistics. As done before with stochastic resonance and other phenomena, we now exploit this tool to study--within a simple mean-field approximation and with an emphasis on the \emph{order parameter} and the ``\emph{susceptibility}''--the combined effect on NIPT of the noises' statistics and spectrum. Even for relatively small (\tau), it is shown that whereas fat-tail noise distributions ((q>1)) counteract the effect of self-correlation, compact-support ones ((q<1)) enhance it. Also, an interesting effect on the susceptibility is seen in the last case. 
---
PDF链接:
https://arxiv.org/pdf/704.1155