全部版块 我的主页
论坛 经济学人 二区 外文文献专区
394 0
2022-03-03
摘要翻译:
众所周知,完全的先验无知与学习是不相容的,至少在一个关于(认知)不确定性的连贯理论中是如此。不太为人所知的是,有一种类似于完全无知的状态,Walley称之为近乎无知,这种状态允许学习发生。在本文中,我们提供了新的和实质性的证据,证明在信念非常弱的条件下,也不能真的把近乎无知看作是摆脱开始统计推断问题的一种方法。这一结果的关键是关注一个以潜在的感兴趣的变量为特征的设置。我们争辩说,这种设置是实践中最常见的情况,并且我们表明,对于范畴潜在变量(和一般显化变量)的情况,有一个充分条件,如果得到满足,就会阻止学习在先前的近乎无知的情况下发生。这个条件在最常见的统计问题中很容易得到满足。
---
英文标题:
《Learning about a Categorical Latent Variable under Prior Near-Ignorance》
---
作者:
Alberto Piatti and Marco Zaffalon and Fabio Trojani and Marcus Hutter
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  It is well known that complete prior ignorance is not compatible with learning, at least in a coherent theory of (epistemic) uncertainty. What is less widely known, is that there is a state similar to full ignorance, that Walley calls near-ignorance, that permits learning to take place. In this paper we provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is latent. We argue that such a setting is by far the most common case in practice, and we show, for the case of categorical latent variables (and general manifest variables) that there is a sufficient condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied in the most common statistical problems.
---
PDF链接:
https://arxiv.org/pdf/705.4312
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群