摘要翻译:
本文给出了一个识别集的边界(即支持函数)的估计和推断方法,其中在大量协变量中的选择是基于现代正则化工具的。我用半参数矩方程来表征边界。结合Neyman正交性和样本分裂的思想,构造了一个根-n一致的一致渐近高斯边界估计,并提出了一个乘数bootstrap过程来进行推理。我将这一结果应用于部分线性模型和部分线性IV模型,结果为区间值。
---
英文标题:
《Debiased Machine Learning of Set-Identified Linear Models》
---
作者:
Vira Semenova
---
最新提交年份:
2021
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
This paper provides estimation and inference methods for an identified set's boundary (i.e., support function) where the selection among a very large number of covariates is based on modern regularized tools. I characterize the boundary using a semiparametric moment equation. Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly asymptotically Gaussian estimator of the boundary and propose a multiplier bootstrap procedure to conduct inference. I apply this result to the partially linear model and the partially linear IV model with an interval-valued outcome.
---
PDF链接:
https://arxiv.org/pdf/1712.10024