摘要翻译:
提出了一种单指标条件矩约束(CMR)辨识的高维稀疏参数的Lasso型估计器。除了这个参数之外,矩函数还可以依赖于一个干扰函数,如倾向得分或条件选择概率,我们用现代
机器学习工具估计这些函数。我们首先调整矩函数,使未来损失函数的梯度对第一级正则化偏差不敏感(形式上,Neyman正交),保持单指标性质。然后我们把损失函数取为调整矩函数关于单指标的不定积分。所提出的Lasso估计器以oracle速率收敛,其中oracle知道干扰函数,只解决参数问题。我们通过估计康涅狄格州工作优先福利改革试验对妇女福利参与决策的短期异质性影响来验证我们的方法。
---
英文标题:
《Regularized Orthogonal Machine Learning for Nonlinear Semiparametric
Models》
---
作者:
Denis Nekipelov, Vira Semenova, Vasilis Syrgkanis
---
最新提交年份:
2021
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper proposes a Lasso-type estimator for a high-dimensional sparse parameter identified by a single index conditional moment restriction (CMR). In addition to this parameter, the moment function can also depend on a nuisance function, such as the propensity score or the conditional choice probability, which we estimate by modern machine learning tools. We first adjust the moment function so that the gradient of the future loss function is insensitive (formally, Neyman-orthogonal) with respect to the first-stage regularization bias, preserving the single index property. We then take the loss function to be an indefinite integral of the adjusted moment function with respect to the single index. The proposed Lasso estimator converges at the oracle rate, where the oracle knows the nuisance function and solves only the parametric problem. We demonstrate our method by estimating the short-term heterogeneous impact of Connecticut's Jobs First welfare reform experiment on women's welfare participation decision.
---
PDF链接:
https://arxiv.org/pdf/1806.04823