全部版块 我的主页
论坛 经济学人 二区 外文文献专区
346 0
2022-03-03
摘要翻译:
设$P$是素数,$N$是对$P$的正整数素数,$K$是整数。设$P_k(t)$是Atkin的$u$运算符的特征级数,它是驯服水平$n$和权值$k$的$p$-adic超收敛模形式的自同态。在Gouvea和Mazur的猜想的推动下,我们加强了Wan关于$P_k$和$P_{k'}$的系数之间的同余性,使$k'$close$P$-基本为$k$。对于$p-112$,$n=1$,$k=0$,我们计算了一个以二元有理函数幂级数为项的矩阵。我们应用这个计算来证明对于$P=3$,在$P_0$的牛顿多边形$N_0$下面有一个抛物线,它经常与$N_0$无限重合。结果,我们发现在$n_0$以上有一条多边形曲线。对于大的3-adic估值的$k$,在$n_0$上的这个最紧的界产生了$p_0$和$p_k$系数之间最强的同余。
---
英文标题:
《Bounding slopes of $p$-adic modular forms》
---
作者:
Lawren Smithline
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let $p$ be prime, $N$ be a positive integer prime to $p$, and $k$ be an integer. Let $P_k(t)$ be the characteristic series for Atkin's $U$ operator as an endomorphism of $p$-adic overconvergent modular forms of tame level $N$ and weight $k$. Motivated by conjectures of Gouvea and Mazur, we strengthen Wan's congruence between coefficients of $P_k$ and $P_{k'}$ for $k'$ close $p$-adically to $k$. For $p-1 | 12$, $N = 1$, $k = 0$, we compute a matrix for $U$ whose entries are coefficients in the power series of a rational function of two variables. We apply this computation to show for $p = 3$ a parabola below the Newton polygon $N_0$ of $P_0$, which coincides with $N_0$ infinitely often. As a consequence, we find a polygonal curve above $N_0$. This tightest bound on $N_0$ yields the strongest congruences between coefficients of $P_0$ and $P_k$ for $k$ of large 3-adic valuation.
---
PDF链接:
https://arxiv.org/pdf/0705.3614
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群