摘要翻译:
算法作曲、认知科学和
机器学习的研究人员正在研究音乐的预测模型。它们作为组合的基础模型,可以模拟人类的预测,为学习算法提供了一个多学科的应用领域。一个特别成熟和不断进步的子任务是预测单音旋律。由于旋律通常涉及非马尔可夫依赖性,它们的预测需要一个有能力的学习算法。在本论文中,我将最新的特征发现和学习方法PULSE应用于符号音乐建模领域。脉冲由特征生成操作和L1-正则化优化组成。它们用于迭代扩展和剔除特征集合,有效地探索对于普通特征选择方法来说太大的特征空间。我为PULSE设计了一个通用的Python框架,提出了任务优化的特征生成操作和各种音乐理论驱动的特征,并在一个标准的单音民谣和合唱旋律语料库上进行了评估。所提出的方法明显优于可比的最先进的模型。进一步讨论了学习算法的自由参数,分析了学习模型的特征组成。通过PULSE学习的模型提供了一个简单的检查,并首次从音乐学的角度进行了解释。
---
英文标题:
《Learning a Predictive Model for Music Using PULSE》
---
作者:
Jonas Langhabel
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Predictive models for music are studied by researchers of algorithmic composition, the cognitive sciences and machine learning. They serve as base models for composition, can simulate human prediction and provide a multidisciplinary application domain for learning algorithms. A particularly well established and constantly advanced subtask is the prediction of monophonic melodies. As melodies typically involve non-Markovian dependencies their prediction requires a capable learning algorithm. In this thesis, I apply the recent feature discovery and learning method PULSE to the realm of symbolic music modeling. PULSE is comprised of a feature generating operation and L1-regularized optimization. These are used to iteratively expand and cull the feature set, effectively exploring feature spaces that are too large for common feature selection approaches. I design a general Python framework for PULSE, propose task-optimized feature generating operations and various music-theoretically motivated features that are evaluated on a standard corpus of monophonic folk and chorale melodies. The proposed method significantly outperforms comparable state-of-the-art models. I further discuss the free parameters of the learning algorithm and analyze the feature composition of the learned models. The models learned by PULSE afford an easy inspection and are musicologically interpreted for the first time.
---
PDF链接:
https://arxiv.org/pdf/1709.08842