全部版块 我的主页
论坛 经济学人 二区 外文文献专区
241 0
2022-03-03
摘要翻译:
在这篇由两部分组成的论文中,我们提出了一种新的框架和方法来分析某些基于图像的生化检测数据,如ELISPOT和荧光斑点检测。在这第二部分中,我们重点介绍我们的算法贡献。我们给出了一个泛函逆扩散的算法,解决了我们在第一部分提出的变分问题。作为该算法的一部分,我们给出了非负群稀疏正则器的近端算子,这是一个新颖的结果,它本身也是与以前关于函数和的近端算子的结果相比较的。然后,我们给出了一个离散化的算法近似实现,并从操作小区检测度量和分布最优传输度量两个方面对其进行了评估。
---
英文标题:
《Cell Detection by Functional Inverse Diffusion and Non-negative Group
  Sparsity$-$Part II: Proximal Optimization and Performance Evaluation》
---
作者:
Pol del Aguila Pla and Joakim Jald\'en
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this two-part paper, we present a novel framework and methodology to analyze data from certain image-based biochemical assays, e.g., ELISPOT and Fluorospot assays. In this second part, we focus on our algorithmic contributions. We provide an algorithm for functional inverse diffusion that solves the variational problem we posed in Part I. As part of the derivation of this algorithm, we present the proximal operator for the non-negative group-sparsity regularizer, which is a novel result that is of interest in itself, also in comparison to previous results on the proximal operator of a sum of functions. We then present a discretized approximated implementation of our algorithm and evaluate it both in terms of operational cell-detection metrics and in terms of distributional optimal-transport metrics.
---
PDF链接:
https://arxiv.org/pdf/1710.01622
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群