摘要翻译:
定义了扇形σ的z/2z Hodge空间H_{pq}(\sigma)。如果sigma是自反多面体delta的正规扇,则利用多面体对偶计算sigma的z/2z Hodge空间。特别地,如果三角形面扇∑*中维数至多为e的锥是光滑的,则对于p<e-1我们计算H_{pq}(∑)。如果\sigma^*是光滑扇,则完全确定空间H_{pq}(\sigma),并证明了与\sigma相关的复圈簇X是最大的,即X(R)的z/2zBetti数之和等于X(C)的z/2zBetti数之和。
---
英文标题:
《Hodge Spaces for Real Toric Varieties》
---
作者:
Valerie Hower
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We define the Z/2Z Hodge spaces H_{pq}(\Sigma) of a fan \Sigma. If \Sigma is the normal fan of a reflexive polytope \Delta then we use polyhedral duality to compute the Z/2Z Hodge Spaces of \Sigma. In particular, if the cones of dimension at most e in the face fan \Sigma^* of \Delta are smooth then we compute H_{pq}(\Sigma) for p<e-1. If \Sigma^* is a smooth fan then we completely determine the spaces H_{pq}(\Sigma) and we show the toric variety X associated to \Sigma is maximal, meaning that the sum of the Z/2Z Betti numbers of X(R) is equal to the sum of the Z/2Z Betti numbers of X(C).
---
PDF链接:
https://arxiv.org/pdf/0705.0516