摘要翻译:
我们研究了多用户大规模多输入单输出(MISO)系统,重点研究了下行链路传输,其中基站(BS)采用带有低成本1位数模转换器的大型天线阵列。现有波束形成方案与1比特DAC的直接组合在中到高信噪比下会导致误差下限,这是由于DAC的粗量化精度有限。在本文中,我们考虑了基于相长干扰的量化线性波束形成方案和直接设计发射信号矢量的非线性映射方案。由于采用了1位量化,非线性映射方案的最优解是非凸的。为了解决这个问题,首先放松1位DAC的非凸约束,然后进行元素规范化以满足1位DAC传输。我们进一步提出了一种低复杂度的符号缩放方案,该方案包括三个阶段,其中每个天线单元上的量化发射信号被依次选择。数值结果表明,所提出的符号缩放方案与基于优化的非线性映射方案相比具有相当的性能,而相应的复杂度与非线性方案相比可以忽略不计。
---
英文标题:
《Massive MIMO 1-Bit DAC Transmission: A Low-Complexity Symbol Scaling
Approach》
---
作者:
Ang Li, Christos Masouros, Fan Liu, and A. L. Swindlehurst
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
We study multi-user massive multiple-input single-output (MISO) systems and focus on downlink transmission, where the base station (BS) employs a large antenna array with low-cost 1-bit digital-to-analog converters (DACs). The direct combination of existing beamforming schemes with 1-bit DACs is shown to lead to an error floor at medium-to-high SNR regime, due to the coarse quantization of the DACs with limited precision. In this paper, based on the constructive interference we consider both a quantized linear beamforming scheme where we analytically obtain the optimal beamforming matrix, and a non-linear mapping scheme where we directly design the transmit signal vector. Due to the 1-bit quantization, the formulated optimization for the non-linear mapping scheme is shown to be non-convex. To solve this problem, the non-convex constraints of the 1-bit DACs are firstly relaxed, followed by an element-wise normalization to satisfy the 1-bit DAC transmission. We further propose a low-complexity symbol scaling scheme that consists of three stages, in which the quantized transmit signal on each antenna element is selected sequentially. Numerical results show that the proposed symbol scaling scheme achieves a comparable performance to the optimization-based non-linear mapping approach, while its corresponding complexity is negligible compared to that of the non-linear scheme.
---
PDF链接:
https://arxiv.org/pdf/1709.08278