摘要翻译:
我们给出了具有孤立奇点的复代数曲面的例子,使得这些奇点不是度量圆锥的,即奇点附近曲面的芽相对于内度量不是锥的双Lipschitz等价的。证明度量二次曲线结构不存在的技术与度量同调的发展有关。例子的类别相当大,它包括一些Brieskorn曲面。
---
英文标题:
《Inner Metric Geometry of Complex Algebraic Surfaces with Isolated
Singularities》
---
作者:
Lev Birbrair, Alexandre Fernandes
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We produce examples of complex algebraic surfaces with isolated singularities such that these singularities are not metrically conic, i.e. the germs of the surfaces near singular points are not bi-Lipschitz equivalent, with respect to the inner metric, to cones. The technique used to prove the nonexistence of the metric conic structure is related to a development of Metric Homology. The class of the examples is rather large and it includes some surfaces of Brieskorn.
---
PDF链接:
https://arxiv.org/pdf/0705.3185