全部版块 我的主页
论坛 经济学人 二区 外文文献专区
445 0
2022-03-04
摘要翻译:
传感器网络希望将信息传输到融合中心以允许其检测公共假设,但同时阻止其推断私人假设。我们在每个传感器上提出了一个多层非线性处理过程,在传感器数据被发送到融合中心之前对传感器数据进行畸变。在我们提出的框架中,传感器被分成簇,每个传感器首先对从同一簇和前一层传感器接收的信息应用非线性融合函数。然后使用线性加权矩阵来扭曲它发送给下一层传感器的信息。我们采用非参数方法,并发展了一个改进的镜像下降算法来优化加权矩阵,以确保检测私有假设的正则经验风险高于给定的隐私阈值,同时使检测公共假设的正则经验风险最小。在经验数据集上的实验表明,我们的方法能够在公共假设和私人假设的错误率之间实现良好的权衡。
---
英文标题:
《Multilayer Nonlinear Processing for Information Privacy in Sensor
  Networks》
---
作者:
Xin He, Meng Sun, Wee Peng Tay, Yi Gong
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Cryptography and Security        密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  A sensor network wishes to transmit information to a fusion center to allow it to detect a public hypothesis, but at the same time prevent it from inferring a private hypothesis. We propose a multilayer nonlinear processing procedure at each sensor to distort the sensor's data before it is sent to the fusion center. In our proposed framework, sensors are grouped into clusters, and each sensor first applies a nonlinear fusion function on the information it receives from sensors in the same cluster and in a previous layer. A linear weighting matrix is then used to distort the information it sends to sensors in the next layer. We adopt a nonparametric approach and develop a modified mirror descent algorithm to optimize the weighting matrices so as to ensure that the regularized empirical risk of detecting the private hypothesis is above a given privacy threshold, while minimizing the regularized empirical risk of detecting the public hypothesis. Experiments on empirical datasets demonstrate that our approach is able to achieve a good trade-off between the error rates of the public and private hypothesis.
---
PDF链接:
https://arxiv.org/pdf/1711.04459
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群