摘要翻译:
利用序参量的正则变换恢复了哈密顿量的伊辛对称性,导出了Tolman长度为两项之和的表达式。其中一个是序参量涨落产生的项,另一个是熵产生的项。分析了Tolman长度在临界点附近的超前奇异行为。所得结果与M.A.的结果一致。阿尼西莫夫,菲斯。Rev.Lett.\textbf{98}035702(2007)。
---
英文标题:
《Asymmetry of the Hamiltonian and the Tolman's length》
---
作者:
V. L. Kulinskii
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Using the canonical transformation of the order parameter which restores the Ising symmetry of the Hamiltonian we derive the expression for the Tolman length as a sum of two terms. One of them is the term generated by the fluctuations of the order parameter the other one is due to the entropy. The leading singular behavior of the Tolman length near the critical point is analyzed. The obtained results are in correspondence with that of M.A. Anisimov, Phys. Rev. Lett., \textbf{98} 035702 (2007).
---
PDF链接:
https://arxiv.org/pdf/704.2934