摘要翻译:
一般认为,一般系统可以通过足够慢的参数变化从一种状态可逆地转变为另一种状态。支持这一论断的一个标准论点是基于一种可能性,将系统的能量或熵在斜坡速度中扩展为泰勒级数。在这里我们证明了这个论证只在足够高的维数下是有效的,而在低维无间隙系统中可以被打破。我们确定了系统对慢坡道响应的三个一般情况:(a)平均场,(B)非解析,(C)非绝热。在最后一个区域,坡道速度为零和系统尺寸为无穷大的极限不发生变化,在热力学极限内绝热过程不存在。我们通过数值模拟来支持我们的结果。我们的发现可以与凝聚态物质、原子物理、量子计算、量子光学、宇宙学等相关。
---
英文标题:
《Breakdown of the adiabatic limit in low dimensional gapless systems》
---
作者:
Anatoli Polkovnikov and Vladimir Gritsev
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与
神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
---
英文摘要:
It is generally believed that a generic system can be reversibly transformed from one state into another by sufficiently slow change of parameters. A standard argument favoring this assertion is based on a possibility to expand the energy or the entropy of the system into the Taylor series in the ramp speed. Here we show that this argumentation is only valid in high enough dimensions and can break down in low-dimensional gapless systems. We identify three generic regimes of a system response to a slow ramp: (A) mean-field, (B) non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp speed going to zero and the system size going to infinity do not commute and the adiabatic process does not exist in the thermodynamic limit. We support our results by numerical simulations. Our findings can be relevant to condensed-matter, atomic physics, quantum computing, quantum optics, cosmology and others.
---
PDF链接:
https://arxiv.org/pdf/706.0212