摘要翻译:
基因和物种多样性和共存的起源传统上是在孤立的生物学水平上进行研究的。生态学和进化论的观点集中在使物种共存或限制物种共存的机制、遗传变异和物种形成的遗传学上,但仍缺乏将这些方法联系起来的统一理论。在这里,我们在分子进化和生物多样性中性理论的背景下引入进化图,以提供一个同时处理物种形成率和联合遗传多样性和物种多样性的框架。为了说明这个问题,我们还研究了两个具有适应度差异的图上的进化模型,它们提供了遗传和生态动力学如何驱动多样化速度的见解。中性进化产生的物种形成速度、物种丰富度(即物种数量分别是遗传图和生态图的五倍和两倍)和遗传-物种多样性(即物种数量分别是遗传图和生态图的两倍)最高。因此,物种形成的速度、遗传-物种多样性和共存可能会因遗传因素和生态因素是驱动系统进化的因素而有很大差异。通过将分子、性和营养行为联系在生态和进化的尺度上,相互作用的图表可以阐明多样性和有机体共存的起源和进化。
---
英文标题:
《Unifying Theories of Molecular, Community and Network Evolution》
---
作者:
Carlos J. Melian, David Alonso, Diego P. Vazquez and James Regetz
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Populations and Evolution 种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
The origin of diversification and coexistence of genes and species have been traditionally studied in isolated biological levels. Ecological and evolutionary views have focused on the mechanisms that enable or constrain species coexistence, genetic variation and the genetics of speciation, but a unified theory linking those approaches is still missing. Here we introduce evolutionary graphs in the context of neutral theories of molecular evolution and biodiversity to provide a framework that simultaneously addresses speciation rate and joint genetic and species diversities. To illuminate this question we also study two models of evolution on graphs with fitness differences, which provide insights on how genetic and ecological dynamics drive the speed of diversification. Neutral evolution generates the highest speed of speciation, species richness (i.e. five times and twice as many species as compared to genetic and ecological graphs, respectively) and genetic--species diversity (i.e., twice as many as genetic and ecological graphs, respectively). Thus the speed of speciation, the genetic--species diversity and coexistence can differ dramatically depending on whether genetic factors versus ecological factors drive the evolution of the system. By linking molecular, sexual and trophic behavior at ecological and evolutionary scales, interacting graphs can illuminate the origin and evolution of diversity and organismal coexistence.
---
PDF链接:
https://arxiv.org/pdf/0807.2665