摘要翻译:
我们发展了工具,研究了代数闭域$k$上的多项式环$k[{\bf P}^n]$中的齐次理想$i$在幂$i^r$中的符号幂$i^{(m)}$的包容问题。我们得到了对集$(r,m)$的结构结果,使得$i^{(m)}\子集q i^r$。作为推论,我们证明了当$S$是${bf P}^2$中的有限泛型点集时,$I^2$包含$I^{(3)}$(从而部分地回答了Huneke问题),并证明了Ein-Lazarsfeld-Smith和Hochster-Huneke的包容定理对于每个固定维数和余维数都是最优的。
---
英文标题:
《Comparing powers and symbolic powers of ideals》
---
作者:
Cristiano Bocci (University of Siena), Brian Harbourne (University of
Nebraska)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We develop tools to study the problem of containment of symbolic powers $I^{(m)}$ in powers $I^r$ for a homogeneous ideal $I$ in a polynomial ring $k[{\bf P}^N]$ in $N+1$ variables over an algebraically closed field $k$. We obtain results on the structure of the set of pairs $(r,m)$ such that $I^{(m)}\subseteq I^r$. As corollaries, we show that $I^2$ contains $I^{(3)}$ whenever $S$ is a finite generic set of points in ${\bf P}^2$ (thereby giving a partial answer to a question of Huneke), and we show that the containment theorems of Ein-Lazarsfeld-Smith and Hochster-Huneke are optimal for every fixed dimension and codimension.
---
PDF链接:
https://arxiv.org/pdf/0706.3707